Resume and JobRESUME AND JOB
Tencent logo

微信秒剪-agent强化学习训练框架开发工程师

Tencent

Software and Technology Jobs

微信秒剪-agent强化学习训练框架开发工程师

full-timePosted: Nov 25, 2025

Job Description

微信秒剪-agent强化学习训练框架开发工程师

📋 Job Overview

The role focuses on developing and optimizing reinforcement learning training frameworks for WeChat's AI agents, particularly enhancing performance in long-context and tool-calling scenarios. Responsibilities include building high-performance RL frameworks, optimizing inference and training pipelines, and researching cutting-edge large model technologies. This position contributes to improving the efficiency, stability, and throughput of agent-based systems within Tencent's ecosystem.

📍 Location: Beijing, China

🏢 Business Unit: WXG

📄 Full Description

1.参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能;
2.搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性;
3.参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证;
4.深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐。

🎯 Key Responsibilities

  • 参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能
  • 搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性
  • 参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证
  • 深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐

Locations

  • Beijing, China

Salary

Estimated Salary Rangemedium confidence

300,000 - 600,000 CNY / yearly

Source: ai estimated

* This is an estimated range based on market data and may vary based on experience and qualifications.

Responsibilities

  • 参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能
  • 搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性
  • 参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证
  • 深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐

Target Your Resume for "微信秒剪-agent强化学习训练框架开发工程师" , Tencent

Get personalized recommendations to optimize your resume specifically for 微信秒剪-agent强化学习训练框架开发工程师. Takes only 15 seconds!

AI-powered keyword optimization
Skills matching & gap analysis
Experience alignment suggestions

Check Your ATS Score for "微信秒剪-agent强化学习训练框架开发工程师" , Tencent

Find out how well your resume matches this job's requirements. Get comprehensive analysis including ATS compatibility, keyword matching, skill gaps, and personalized recommendations.

ATS compatibility check
Keyword optimization analysis
Skill matching & gap identification
Format & readability score

Tags & Categories

TencentBeijingChinaWXGWXG

Answer 10 quick questions to check your fit for 微信秒剪-agent强化学习训练框架开发工程师 @ Tencent.

Quiz Challenge
10 Questions
~2 Minutes
Instant Score

Related Books and Jobs

No related jobs found at the moment.

Tencent logo

微信秒剪-agent强化学习训练框架开发工程师

Tencent

Software and Technology Jobs

微信秒剪-agent强化学习训练框架开发工程师

full-timePosted: Nov 25, 2025

Job Description

微信秒剪-agent强化学习训练框架开发工程师

📋 Job Overview

The role focuses on developing and optimizing reinforcement learning training frameworks for WeChat's AI agents, particularly enhancing performance in long-context and tool-calling scenarios. Responsibilities include building high-performance RL frameworks, optimizing inference and training pipelines, and researching cutting-edge large model technologies. This position contributes to improving the efficiency, stability, and throughput of agent-based systems within Tencent's ecosystem.

📍 Location: Beijing, China

🏢 Business Unit: WXG

📄 Full Description

1.参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能;
2.搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性;
3.参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证;
4.深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐。

🎯 Key Responsibilities

  • 参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能
  • 搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性
  • 参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证
  • 深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐

Locations

  • Beijing, China

Salary

Estimated Salary Rangemedium confidence

300,000 - 600,000 CNY / yearly

Source: ai estimated

* This is an estimated range based on market data and may vary based on experience and qualifications.

Responsibilities

  • 参与开发优化大模型推理性能,提升长调用链 Agent 推理效果和推理性能
  • 搭建高性能的 Agent RL训练和推理框架,满足超长上下文(工具调用)场景下 Agent RL的训练效率以及训练稳定性
  • 参与大窗口、分布式训练的性能优化,持续跟进大模型训练框架前沿技术,进行关键技术预研以及落地验证
  • 深入分析模型后训练过程中的链路流程,包括数据加载、通信效率等,提升训练速度以及训练吞吐

Target Your Resume for "微信秒剪-agent强化学习训练框架开发工程师" , Tencent

Get personalized recommendations to optimize your resume specifically for 微信秒剪-agent强化学习训练框架开发工程师. Takes only 15 seconds!

AI-powered keyword optimization
Skills matching & gap analysis
Experience alignment suggestions

Check Your ATS Score for "微信秒剪-agent强化学习训练框架开发工程师" , Tencent

Find out how well your resume matches this job's requirements. Get comprehensive analysis including ATS compatibility, keyword matching, skill gaps, and personalized recommendations.

ATS compatibility check
Keyword optimization analysis
Skill matching & gap identification
Format & readability score

Tags & Categories

TencentBeijingChinaWXGWXG

Answer 10 quick questions to check your fit for 微信秒剪-agent强化学习训练框架开发工程师 @ Tencent.

Quiz Challenge
10 Questions
~2 Minutes
Instant Score

Related Books and Jobs

No related jobs found at the moment.